
1 Random variables and distributions

In this chapter we consider real valued functions, called random variables, de-

fined on the sample space.

X : S → RX

The set of possible values of X is denoted by the set RX. Random variables

constitute the quantities of interest in most experiments.

If RX is countable, we say X is discrete. If on the other hand, RX is an

interval or a union of intervals, we say X is continuous.
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Example Toss a balanced coin 3 times. Our interest is the number of heads

obtained and not necessarily on the order of the outcomes. Each point in

the sample space is equally likely.

Sample space X =Number of heads Number of tails Probability

(HHH) 3 0 1
8

(HHT ) 2 1 1
8

(HTH) 2 1 1
8

(HTT ) 1 2 1
8

(THH) 2 1 1
8

(THT ) 1 2 1
8

(TTH) 1 2 1
8

(TTT ) 0 3 1
8

Here, RX = {0, 1, 2, 3}and hence X is discrete. The pmf is given by the table

x 0 1 2 3

f(x) 1
8

3
8

3
8

1
8

Example Let X be the number of e-mails received during the time interval

(0, t) and let Y be the time between e-mails. The random variable X

is discrete and takes values 0, 1, 2, .... On the other hand, the random

variable Y is continuous and takes values in an interval of length at most

t.
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Defiinitions

• The probability mass function or probability distribution of the discrete

random variableX is the function f (x) = P (X = x) for all possible values

x. It satisfies the following properties

i) f (x) ≥ 0

ii)
∑
f (x) = 1

The cumulative distribution function F (x) of a discrete random variable X is

F (x) =
∑
t≤x

f (t) ,−∞ < x <∞

Associated with a random variable is the probability mass function which

attaches to each value. We see for example that the value 2 is taken 3 times

and the probability for each instance is 1
8 . Hence the probability of the random

variable taken the value 3 is 3
(
1
8

)
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Example1 Coin tossing

i) Probability mass function plot for coin tossing

ii) Probability histogram

iii) Discrete cumulative distribution function

F (x) =



0 x < 0

1
8 0 ≤ x < 1

4
8 1 ≤ x < 2

7
8 2 ≤ x < 3

1 3 ≤ x
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Example Find the constant c which makes the following a proper density

f (x) = cx, x = 1, 2, 3

We must have 1 =
∑
f (x) = c

∑3
x=1 x = 6c. Hence c = 1

6
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1.1 Continuous probability distributions

If a sample space contains an infinite number of possibilities equal to the number

of points on a line segment, it is called a continuous sample space. For such

a space, probabilities can no longer be assigned to individual values. Instead,

probabilities must be assigned to sub-intervals

P (a < X < b)

Definition The function f (x) is a probability density function for the contin-

uous random variable X defined over the set of real numbers if

i) f (x) ≥ 0, all real x

ii)
∫∞
−∞ f (x) dx = 1

iii) P (a < X < b) =
∫ b
a
f (t) dt

iv) the cumulative distribution function

F (x) = P (X ≤ x) =
∫ x

−∞
f (t) dt
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Example1 f (x) = 1, 0 < x < 1

Example2 f (x) = e−x, 0 < x <∞. F (t) =
∫ t
0
e−xdx = 1− e−t, t > 0

Example Find the constant c which makes f (x) = cx, 0 < x < 1 a proper

density.

We must have 1 =
∫
f (x) dx = c

∫ 1

0
xdx = cx

2

2 |
1
0 = c

2 . Hence, c = 2.

We may calculate

P

(
1

4
< X <

3

4

)
=

∫ 3
4

1
4

2xdx =
1

2

Example (Exercise 2.7) Let

f (x) =



x 0 < x < 1

2− x 1 ≤ x < 2

0 elsewhere

a) P (X < 1.2) =
∫ 1.2

0
f (x) dx =

∫ 1

0
xdx+

∫ 1.2

1
(2− x) dx = 0.68

b) P (0.5 < X < 1) =
∫ 1

0.5
xdx = 3

8
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1.2 Joint probability distributions

We have situations where more than characteristic is of interest. Suppose we

toss a pair of dice once. The discrete sample space consists of the pairs

{(x, y) : x = 1, ..., 6; y = 1, ..., 6}

where X,Y are the random variables representing the results of the first and

second die respectively. For two electric components in a series connection, we

may be interested in the lifetimes of each.
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Definition The function f (x, y) is a joint probability distribution or probabil-

ity mass function oϑfthe discrete random variables X,Y if

i) f (x, y) ≥ 0, all (x, y)

ii)
∑
x

∑
y f (x, y) = 1

iii) P (X = x, Y = y) = f (x, y)

iv) P ((X,Y ) εA) =
∑∑

(x,y)εA f (x, y)
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Example One toss of a pair of dice: P (X = x, Y = y) = 1
36

Y

1 2 3 4 5 6

1 1
36

1
36

1
36

1
36

1
36

1
36

2 1
36

1
36

1
36

1
36

1
36

1
36

X 3 1
36

1
36

1
36

1
36

1
36

1
36

4 1
36

1
36

1
36

1
36

1
36

1
36

5 1
36

1
36

1
36

1
36

1
36

1
36

6 1
36

1
36

1
36

1
36

1
36

1
36
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Definition The function f (x, y) is a joint probability distribution of the con-

tinuous random variables X,Y if

i) f (x, y) ≥ 0, all (x, y)

ii)
∫ ∫

f (x, y) dxdy = 1

iii) P ((X,Y ) εA) =
∫ ∫

A
f (x, y) dxdy
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Example1 Find the constant c which makes f (x, y) = cxy2, 0 < x < 1, 0 <

y < 1 a proper density

We must have 1 =
∫ ∫

f (x, y) dxdy = c
∫ 1

0

∫ 1

0
xy2dxdy = cx

2

2 |
1
0
y3

3 |
1
0 = c

6

Hence, c = 6

Example1 (continued) We calculate

P

(
0 < X <

1

2
, 0 < Y <

1

2

)
= 6

∫ 1
2

0

∫ 1
2

0

xy2dxdy =
1

4

Example1 (continued) Calculate

P

(
0 < X <

1

2
|0 < Y <

1

2

)
=

P
(
0 < X < 1

2 , 0 < Y < 1
2

)
P
(
0 < Y < 1

2

)
=

1
4

1
= 0.25
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It is possible to retrieve the individual distribution of a random variable from

the joint distribution. This is done through the notion of marginal distributions.

Definition The marginal distributions of X alone and of Y alone are

g (x) =
∑
y

f (x, y) , h (y) =
∑
x

f (x, y)

for the discrete case and

g (x) =

∫
f (x, y) dy, h (y) =

∫
f (x, y) dx

for the continuous case.
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Example1 Suppose that the joint density ofX,Y is given as f (x, y) = 8xy, 0 <

x < y < 1. Find the marginal densities of X and Y. We calculate

gX (x) =

∫ 1

x

8xydy = 4x
(
1− x2

)
, 0 < x < 1

gY (y) =

∫ y

0

8xydx = 4y3, 0 < y < 1

Example2 Suppose we draw two balls from an urn containing 5 white, 2 blue

and 4 red balls. Let X and Y be the number of white and red balls drawn

respectively. The joint density of X,Y is given by

f (x, y) =

(
5
x

) (
4
y

) (
2

2−x−y
)(

11
2

) , x+ y ≤ 2

y gX (x)

0 1 2

x 0 1
55

8
55

6
55

15
55

1 10
55

20
55 0 30

55

2 10
55 0 0 10

55

gY (y) 21
55

28
55

6
55 1

The marginal densities are expressed in the “margins”.
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1.3 Conditional distributions

Definition The conditional distribution of the random variable Y given X = x

is

f (y|x) = f (x, y)

g (x)
, g (x) > 0

Similarly the conditional distribution of X given Y = y

f (x|y) = f (x, y)

h (y)
, h (y) > 0

Example Suppose that the joint density of X,Y is given as f (x, y) = 8xy, 0 <

x < y < 1.

f (y|x) =
8xy

4x (1− x2)
, 0 < x < y < 1

=
2y

1− x2
, 0 < x < y < 1

We may easily verify that f (y|x) is a proper density since
∫ 1

x
f (y|x) dy = 1

Example2 (continued) We can calculate

f (y|x) =



1
15 y = 0

8
15 y = 1

6
15 y = 2
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The variables are said to be independent if

f (x, y) = g (x)h (y) , all (x, y)

For random variablesX1, ..., Xn with joint density f (x1, ..., xn) and marginals

f1 (x1) , ..., fn (xn) we say they are mutually independent if and only if

f (x1, ..., xn) = f1 (x1) ...fn (xn)

for all tuples (x1, ..., xn) within their range.

Examples In the urn example, X and Y are not independent. Similarly for

the continuous density example.
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1.4 Properties of random variables

Definition The mean or expected value of a function L of a random variable

X , say L (X) is

µ = E [L (X)] =


∑
L (x) f (x) X discrete

∫
L (x) f (x) dx X continuous

Definition The mean or expected value of a function L of random variables

X,Y , say L (X,Y ) is

µ = E [L (X,Y )] =


∑
L (x, y) f (x, y) X Y, discrete

∫
L (x, y) f (x, y) dxdy X Y, continuous

17



Example (Urn example) E (X) = 0
(
15
55

)
+ 1

(
30
55

)
+ 2

(
10
55

)
= 50

55 = 0.909.

E (Y ) = 0
(
21
55

)
+ 1

(
28
55

)
+ 2

(
6
55

)
= 40

55 = 0.727.

E
(
X2
)
= 0

(
15
55

)
+ 12

(
30
55

)
+ 22

(
10
55

)
= 70

55 = 1.272.

E
(
Y 2
)
= 0

(
15
55

)
+ 12

(
28
55

)
+ 22

(
6
55

)
= 52

55 = 0.945.

E (XY ) = 1 (1)
(
20
55

)
= 20

55
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Definition The covariance of two random variablesX,Y is σXY = E [(X − µX) (Y − µY )] =

E (XY )− µXµY .

Definition The variance of a random variable X is σ2
X = E (X − µX)

2
=

E (X)
2 − µ2

X

Definition The correlation between X,Y is ρ = σXY

σXσY

The variance measures the amount of variation in a random variable taking

into account the weighting given to the values of the random variable. The

correlation measures the “interaction” between the variables. A positive corre-

lation indicates that an increase in X results in an increase in Y . A negative

correlation indicates that an increase inX results in a decrease in Y.
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Example (urn example) σ2
X = 70

55−
(
50
55

)2
= 54

121 = 0.446,σXY = 20
55−

(
50
55

) (
40
55

)
=

− 36
121 = −0.2975 ρ = −− .690

Example Suppose that the joint density of X,Y is given as f (x, y) = 8xy, 0 <

x < y < 1. Then

µX =
8

15

µY =
4

5

σ2
X =

11

225

σ2
Y =

2

75

σXY =
4

225

ρ = 0.49237
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In this section, we assemble several results on the calculation of expectation

for linear combinations of random variables

Theorem Let X,Y be two random variables and let a, b, c be three arbitrary

constants. Also, let h1 (x) , h2 (x) , h3 (x, y) , h4 (x, y) be real valued func-

tions. Then,

E (aX + b) = aE (X) + b

E [h1 (X)± h2 (X)] = E [h1 (X)]± E [h2 (X)]

E [h3 (X,Y )± h4 (X,Y )] = E [h3 (X,Y )]± E [h4 (X,Y )]

σ2
aX+bY+c = a2σ2

X + b2σ2
Y + 2abσXY
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Theorem Let X,Y be two independent random variables and let a, b be two

arbitrary constants. Then

E (XY ) = E (X)E (Y )

σXY = 0

σ2
aX+bY = a2σ2

X + b2σ2
Y
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This theorem generalizes to several independent random variables X1, ..., Xn

Theorem Let X1, ..., Xn be random variables and let a1, ..., an be arbitrary

constants. Then

i) E [
∑
aiXi] =

∑
aiE [Xi]

ii)If in addition, X1, ..., Xn are independent random variables

σ2∑
aiXi

=
∑

a2iσ
2
Xi

Example Flip a coin with probability of heads p, n times and let Xi = 1 if

we observe heads on the ith toss and Xi = 0, if we observe tails. Assume

the results of the tosses are independent and performed under indentical

conditions. Then, X1, ..., Xn are independent and identically distributed

random variables. The sum,
∑
Xi represents the number of heads in n

tosses. It follows from the theorem

i) E
[
1
n

∑
Xi

]
=
∑

1
nE [Xi] =

1
n (np) = p

ii) σ2
1
n

∑
Xi

=
∑(

1
n

)2
σ2
Xi

= σ2

n = p(1−p)
n

The example demonstrates that the average of a set of independent random

variables preserves the mean and importantly reduces the variance by a factor

equal to the size of the sample. .
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